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The Ultimate Goal:
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Motivation

Our Far Less Ambitious Goal:

Data-driven construction of a RANS model that is universal in the 
“sense it can be used by anyone and applied to as many flows as 
possible without concern for unusual or dentrimental behavior”.

Construction of a data-driven framework capable of yielding 
RANS models that are accurate and stable for design space 
exploration about a nominal design configuration.

C.L. Rumsey, G.N. Coleman, and L. Wang. "In search of data-driven improvements to RANS models applied to 
separated flows." AIAA SCITECH 2022 Forum. 2022.
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Motivation
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Our particular objective is to learn an effective RANS model for 
the entire design space using data coming from a very small 
number of high-fidelity simulations (ideally one simulation).

More concisely, we seek a model that extrapolates beyond the 
training set of designs – but still within a limited design space.
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Motivation

This last objective has pushed us to consider iterative models 
than more commonly employed corrective models.

Corrective Model Workflow

Iterative Model Workflow
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Motivation

Our framework has also been driven by the following:

1. We seek to learn as few model terms as possible.

2. We seek to run as few RANS simulations as possible during training.

3. We seek to build algebraic Reynolds stress models that
accommodate an arbitrary number of tensor inputs.

We start with a baseline RANS model and only learn an 
improved Reynolds stress model.

We train using turbulence variables that are derived from 
the baseline RANS model and the high-fidelity data.

We learn the components of the Reynolds stress tensor 
in a particular flow- and geometry-dependent reference 
frame in terms of inputs in this same frame.
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Training with Model-Derived Variables

Step 1: Generate Model-Derived Turbulence Variables

Step 2: Train Reynolds Stress Model Using High-Fidelity Flow Field 
Data and Model-Derived Turbulence Variables

Note this training methodology can be used in conjunction 
with any baseline RANS model.
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N-Frame Reynolds Stress Representation

As previously mentioned, we learn the components of the Reynolds 
stress tensor in a particular flow- and geometry-dependent reference 
frame in terms of inputs of this same frame.

In particular, we employ a frame constructed from vorticity and the 
gradient of the distance to the wall:

Note this automatically yields a model form with rotational and 
reflectional invariance.
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N-Frame Reynolds Stress Representation

Suppose we have the following Galilean invariant model form:

𝑅"# = 𝑅"#$%&'((𝑺, 𝛀, 𝑘, 𝜔, 𝛁𝑘, 𝜈, 𝑑, 𝛁𝑑)

Then our chosen Reynolds stress representation yields the following 
rotationally, reflectionally, and Galilean invariant model form in 2D:

𝑅"#) = 𝑅"#
),$%&'((𝑆++) , 𝑆+,) , |𝛀|, 𝑘, 𝜔, 𝛁𝑘 +

), 𝛁𝑘 ,
), 𝜈, 𝑑)

Only four additional inputs are included in 3D. Any additional vector 
inputs introduce two new inputs in 2D and three new inputs in 3D, 
while any additional tensor inputs introduce four new inputs in 2D and 
nine new inputs in 3D.
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N-Frame Reynolds Stress Representation

We can further use the Buckingham Pi theorem to arrive at a 
rotationally, reflectionally, Galilean, and unit invariant model form.  This 
further reduces the number of inputs.

In the model employed in this presentation, the following non-
dimensional inputs and outputs were employed:
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Demonstration Example

To demonstrate the utility of our framework, we apply it to the periodic 
hill problem at Re = 5600 with SST as the baseline RANS model:

We train using the 𝛼 = 1.0 (baseline) geometry and test using the 𝛼 =
0.5 (short) and 𝛼 = 1.5 (long) geometries.

H. Xiao, et al. "Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence 
modeling from direct simulations." Computers & Fluids 200 (2020): 104431.
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Neural Network Architecture

3 Hidden Layers

100 Neurons Per Layer

Leaky ReLU Activation

Neural network trained using the Adam optimizer using a standard MSE 
loss function with L2, Gaussian noise, and dropout regularization.
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Performance for Baseline Geometry
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Performance for Baseline Geometry
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Performance for Baseline Geometry
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Performance for Long Geometry
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Performance for Long Geometry
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Performance for Short Geometry
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Performance for Short Geometry
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Performance at Re = 10,595
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Performance at Re = 10,595
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Thank You For Your Time!
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